skip to main content


Search for: All records

Creators/Authors contains: "Bell, Eric W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kolodny, Rachel (Ed.)
    The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top- L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top- L /5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library. 
    more » « less
  2. Abstract

    This article reports and analyzes the results of protein contact and distance prediction by our methods in the 14th Critical Assessment of techniques for protein Structure Prediction (CASP14). A new deep learning‐based contact/distance predictor was employed based on the ensemble of two complementary coevolution features coupling with deep residual networks. We also improved our multiple sequence alignment (MSA) generation protocol with wholesale meta‐genome sequence databases. On 22 CASP14 free modeling (FM) targets, the proposed model achieved a top‐L/5 long‐range precision of 63.8% and a mean distance bin error of 1.494. Based on the predicted distance potentials, 11 out of 22 FM targets and all of the 14 FM/template‐based modeling (TBM) targets have correctly predicted folds (TM‐score >0.5), suggesting that our approach can provide reliable distance potentials for ab initio protein folding.

     
    more » « less
  3. Abstract

    In this article, we report 3D structure prediction results by two of our best server groups (“Zhang‐Server” and “QUARK”) in CASP14. These two servers were built based on the D‐I‐TASSER and D‐QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I‐TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact‐based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network‐based method, DeepPotential, to predict multiple spatial restraints by co‐evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM‐scores of the first models produced by D‐I‐TASSER and D‐QUARK were 96% and 112% higher than those constructed by I‐TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well‐tuned force field that combines spatial restraints, threading templates, and generic knowledge‐based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi‐domain proteins due to low accuracy in inter‐domain distance prediction and modeling protein domains from oligomer complexes, as the co‐evolutionary analysis cannot distinguish inter‐chain and intra‐chain distances. Specifically tuning the deep learning‐based predictors for multi‐domain targets and protein complexes may be helpful to address these issues.

     
    more » « less
  4. Abstract

    We report the results of residue‐residue contact prediction of a new pipeline built purely on the learning of coevolutionary features in the CASP13 experiment. For a query sequence, the pipeline starts with the collection of multiple sequence alignments (MSAs) from multiple genome and metagenome sequence databases using two complementary Hidden Markov Model (HMM)‐based searching tools. Three profile matrices, built on covariance, precision, and pseudolikelihood maximization respectively, are then created from the MSAs, which are used as the input features of a deep residual convolutional neural network architecture for contact‐map training and prediction. Two ensembling strategies have been proposed to integrate the matrix features through end‐to‐end training and stacking, resulting in two complementary programs called TripletRes and ResTriplet, respectively. For the 31 free‐modeling domains that do not have homologous templates in the PDB, TripletRes and ResTriplet generated comparable results with an average accuracy of 0.640 and 0.646, respectively, for the topL/5 long‐range predictions, where 71% and 74% of the cases have an accuracy above 0.5. Detailed data analyses showed that the strength of the pipeline is due to the sensitive MSA construction and the advanced strategies for coevolutionary feature ensembling. Domain splitting was also found to help enhance the contact prediction performance. Nevertheless, contact models for tail regions, which often involve a high number of alignment gaps, and for targets with few homologous sequences are still suboptimal. Development of new approaches where the model is specifically trained on these regions and targets might help address these problems.

     
    more » « less